Source code for qf_lib.backtesting.position_sizer.initial_risk_with_volume_position_sizer

#     Copyright 2016-present CERN – European Organization for Nuclear Research
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.
from typing import List, Optional, Dict
import numpy as np

from qf_lib.backtesting.signals.signal import Signal
from qf_lib.backtesting.broker.broker import Broker
from qf_lib.backtesting.signals.signals_register import SignalsRegister
from qf_lib.backtesting.order.execution_style import MarketOrder
from qf_lib.backtesting.order.order import Order
from qf_lib.backtesting.order.order_factory import OrderFactory
from qf_lib.backtesting.order.time_in_force import TimeInForce
from qf_lib.backtesting.position_sizer.initial_risk_position_sizer import InitialRiskPositionSizer
from qf_lib.common.enums.frequency import Frequency
from qf_lib.common.enums.price_field import PriceField
from qf_lib.common.enums.security_type import SecurityType
from qf_lib.common.tickers.tickers import Ticker
from qf_lib.common.utils.dateutils.relative_delta import RelativeDelta
from qf_lib.common.utils.numberutils.is_finite_number import is_finite_number
from qf_lib.containers.futures.future_tickers.future_ticker import FutureTicker
from qf_lib.containers.futures.futures_chain import FuturesChain
from qf_lib.containers.series.prices_series import PricesSeries
from qf_lib.data_providers.data_provider import DataProvider


[docs]class InitialRiskWithVolumePositionSizer(InitialRiskPositionSizer): """ Variant of initial risk position sizer, which additionally controls the target size based on the mean daily volume. Parameters ---------- broker: Broker data_provider: DataProvider order_factory: OrderFactory initial_risk: float should be set once for all signals. It corresponds to the value that we are willing to lose on single trade. For example: initial_risk = 0.02, means that we are willing to lose 2% of portfolio value in single trade max_target_percentage: float max leverage that is accepted by the position sizer. if None, no max_target_percentage is used. tolerance_percentage: float percentage used by OrdersFactory target_percent_orders function; it defines tolerance to the target percentages max_volume_percentage: float percentage used to cap the target value, so that according to historical volume data, the position will not exceed max_volume_percentage * mean volume within last 100 days """ def __init__(self, broker: Broker, data_provider: DataProvider, order_factory: OrderFactory, signals_register: SignalsRegister, initial_risk: float, max_target_percentage: float = None, tolerance_percentage: float = 0.0, max_volume_percentage: float = 1.0): super().__init__(broker, data_provider, order_factory, signals_register, initial_risk, max_target_percentage, tolerance_percentage) self._cached_futures_chains_dict: Dict[FutureTicker, FuturesChain] = dict() self._max_volume_percentage = max_volume_percentage def _generate_market_orders(self, signals: List[Signal], time_in_force: TimeInForce, frequency: Frequency = None) \ -> List[Optional[Order]]: target_values = { self._get_specific_ticker(signal.ticker): self._compute_target_value(signal) for signal in signals } market_order_list = self._order_factory.target_value_orders( target_values, MarketOrder(), time_in_force, self.tolerance_percentage, frequency ) return market_order_list def _compute_target_value(self, signal: Signal, frequency=Frequency.DAILY) -> float: """ Caps the target value, so that according to historical volume data, the position will not exceed max_volume_percentage * mean volume within last 100 days. """ ticker: Ticker = signal.ticker portfolio_value = self._broker.get_portfolio_value(ticker.currency) target_percentage = self._compute_target_percentage(signal) target_value = portfolio_value * target_percentage end_date = signal.creation_time start_date = end_date - RelativeDelta(days=100) if isinstance(ticker, FutureTicker): # Check if a futures chain instance already exists for this ticker and create it if not # The default adjustment method will be taken (FuturesAdjustmentMethod.NTH_NEAREST) as the volume should # not be adjusted if ticker not in self._cached_futures_chains_dict.keys(): self._cached_futures_chains_dict[ticker] = FuturesChain(ticker, self._data_provider) volume_series: PricesSeries = self._cached_futures_chains_dict[ticker].get_price(PriceField.Volume, start_date, end_date, frequency) else: volume_series: PricesSeries = self._data_provider.get_price(ticker, PriceField.Volume, start_date, end_date, frequency) mean_volume = volume_series.mean() current_price = signal.last_available_price contract_size = ticker.point_value if isinstance(ticker, FutureTicker) else 1 divisor = current_price * contract_size quantity = target_value / divisor if ticker.security_type != SecurityType.CRYPTO: quantity = float(np.floor(quantity)) if abs(quantity) > mean_volume * self._max_volume_percentage: if ticker.security_type == SecurityType.CRYPTO: target_quantity = mean_volume * self._max_volume_percentage else: target_quantity = float(np.floor(mean_volume * self._max_volume_percentage)) target_value = target_quantity * divisor * np.sign(quantity) self.logger.info( "InitialRiskWithVolumePositionSizer: capping {}.\n" "Initial quantity: {}\n" "Reduced quantity: {}".format(ticker.ticker, quantity, target_quantity)) assert is_finite_number(target_value), "target_value has to be a finite number" return target_value