Source code for qf_lib.analysis.tearsheets.tearsheet_with_benchmark

#     Copyright 2016-present CERN – European Organization for Nuclear Research
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.

from datetime import datetime

import scipy.stats as stats
import pandas as pd

from qf_lib.analysis.rolling_analysis.rolling_analysis import RollingAnalysisFactory
from qf_lib.analysis.tearsheets.abstract_tearsheet import AbstractTearsheet
from qf_lib.common.enums.grid_proportion import GridProportion
from qf_lib.common.enums.plotting_mode import PlottingMode
from qf_lib.common.utils.error_handling import ErrorHandling
from qf_lib.containers.series.qf_series import QFSeries
from qf_lib.documents_utils.document_exporting.element.chart import ChartElement
from qf_lib.documents_utils.document_exporting.element.grid import GridElement
from qf_lib.documents_utils.document_exporting.element.new_page import NewPageElement
from qf_lib.documents_utils.document_exporting.element.paragraph import ParagraphElement
from qf_lib.documents_utils.document_exporting.element.table import Table
from qf_lib.plotting.charts.line_chart import LineChart
from qf_lib.plotting.charts.regression_chart import RegressionChart
from qf_lib.plotting.charts.returns_heatmap_chart import ReturnsHeatmapChart
from qf_lib.plotting.decorators.axes_formatter_decorator import AxesFormatterDecorator, PercentageFormatter
from qf_lib.plotting.decorators.axes_position_decorator import AxesPositionDecorator
from qf_lib.plotting.decorators.data_element_decorator import DataElementDecorator
from qf_lib.plotting.decorators.legend_decorator import LegendDecorator
from qf_lib.plotting.decorators.line_decorators import HorizontalLineDecorator
from qf_lib.plotting.decorators.title_decorator import TitleDecorator
from qf_lib.plotting.helpers.create_returns_bar_chart import create_returns_bar_chart
from qf_lib.plotting.helpers.create_returns_distribution import create_returns_distribution
from qf_lib.plotting.helpers.create_skewness_chart import create_skewness_chart
from qf_lib.settings import Settings


[docs]@ErrorHandling.class_error_logging() class TearsheetWithBenchmark(AbstractTearsheet): """Creates a PDF report, which additionally contains a benchmark. Can be used with or without the benchmark Parameters ---------- settings: Settings settings of the project pdf_exporter: PDFExporter tool that creates the pdf with the result strategy_series: QFSeries timeseries of the trading of the strategy benchmark_series: QFSeries timeseries of the benchmark live_date: datetime if set it is used to generate the cone chart title: str title of the document """ def __init__(self, settings: Settings, pdf_exporter, strategy_series: QFSeries, benchmark_series: QFSeries, live_date: datetime = None, title: str = "Strategy Analysis"): super().__init__(settings, pdf_exporter, strategy_series, live_date, title) self.benchmark_series = benchmark_series def build_document(self): series_list = [self.strategy_series, self.benchmark_series] # First Page self._add_header() self._add_perf_chart(series_list) self._add_relative_performance_chart(self.strategy_series, self.benchmark_series) self._add_statistics_table(series_list) # Second Page self.document.add_element(NewPageElement()) self._add_header() self.document.add_element(ParagraphElement("\n")) self._add_returns_statistics_charts() self._add_ret_distribution_and_similarity() self._add_rolling_table() # Third Page self.document.add_element(NewPageElement()) self._add_header() self._add_cone_and_quantiles() self._add_underwater_and_skewness() self._add_rolling_return_chart(series_list) self.document.add_element(ParagraphElement("\n")) self._add_rolling_vol_chart(series_list) self.document.add_element(ParagraphElement("\n")) self._add_rolling_alpha_and_beta(series_list) def _add_returns_statistics_charts(self): grid = self._get_new_grid() # Monthly returns heatmap - Strategy heatmap_chart = ReturnsHeatmapChart(self.strategy_series, title="Monthly Returns - Strategy") grid.add_chart(heatmap_chart) # Annual returns bar chart - Strategy annual_ret_chart_strategy = create_returns_bar_chart(self.strategy_series, title="Annual Returns - Strategy") grid.add_chart(annual_ret_chart_strategy) # Monthly returns heatmap - Benchmark heatmap_chart = ReturnsHeatmapChart(self.benchmark_series, title="Monthly Returns - Benchmark") grid.add_chart(heatmap_chart) # Annual returns bar chart - Benchmark annual_ret_chart_benchmark = create_returns_bar_chart(self.benchmark_series, title="Annual Returns - Benchmark") grid.add_chart(annual_ret_chart_benchmark) self.document.add_element(grid) # put the same x axis range on both histograms min_x = min([annual_ret_chart_strategy.get_decorator("data_element").data.min(), annual_ret_chart_benchmark.get_decorator("data_element").data.min(), 0]) # start at least form 0 max_x = max([annual_ret_chart_strategy.get_decorator("data_element").data.max(), annual_ret_chart_benchmark.get_decorator("data_element").data.max()]) max_x = max_x + (max_x - min_x) / 8 # leave some space on the right to put the bar value annual_ret_chart_strategy.set_x_range(min_x, max_x) annual_ret_chart_benchmark.set_x_range(min_x, max_x) def _add_ret_distribution_and_similarity(self): grid = GridElement(mode=PlottingMode.PDF, figsize=self.half_image_size, dpi=self.dpi) title = "Distribution of Monthly Returns - Strategy" chart_strategy = create_returns_distribution(self.strategy_series, title=title) grid.add_chart(chart_strategy) chart = RegressionChart(self.benchmark_series, self.strategy_series) grid.add_chart(chart) title = "Distribution of Monthly Returns - Benchmark" chart_benchmark = create_returns_distribution(self.benchmark_series, title=title) grid.add_chart(chart_benchmark) chart = RegressionChart(self.strategy_series, self.benchmark_series) grid.add_chart(chart) # put the same x axis range on both histograms min_x = min([chart_strategy.series.min(), chart_benchmark.series.min()]) max_x = max([chart_strategy.series.max(), chart_benchmark.series.max()]) chart_strategy.set_x_range(min_x, max_x) chart_benchmark.set_x_range(min_x, max_x) self.document.add_element(grid) def _add_underwater_and_skewness(self): grid = GridElement(mode=PlottingMode.PDF, figsize=self.half_image_size, dpi=self.dpi) # Underwater plot grid.add_chart(self._get_underwater_chart(self.strategy_series, benchmark_series=self.benchmark_series)) # Skewness chart chart = create_skewness_chart(self.strategy_series, title="Skewness") grid.add_chart(chart) self.document.add_element(grid) def _add_rolling_table(self): dtos = RollingAnalysisFactory.calculate_analysis(self.strategy_series, self.benchmark_series) column_names = [ Table.ColumnCell("Rolling Return Period", css_class="left-align"), "Strategy Average", "Strategy Worst", Table.ColumnCell("Strategy Best", css_class="right-align"), "Benchmark Average", "Benchmark Worst", Table.ColumnCell("Benchmark Best", css_class="right-align"), Table.ColumnCell("% Strategy outperform Benchmark", css_class="right-align")] result = Table(column_names, grid_proportion=GridProportion.Sixteen, css_class="table rolling-table") for dto in dtos: result.add_row([Table.Cell(dto.period, css_class="right-line"), Table.Cell(dto.strategy_average, "{:.2%}"), Table.Cell(dto.strategy_worst, "{:.2%}"), Table.Cell(dto.strategy_best, "{:.2%}"), Table.Cell(dto.benchmark_average, "{:.2%}"), Table.Cell(dto.benchmark_worst, "{:.2%}"), Table.Cell(dto.benchmark_best, "{:.2%}"), Table.Cell(dto.percentage_difference, "{:.2%}")]) self.document.add_element(result) def _add_rolling_alpha_and_beta(self, timeseries_list): freq = timeseries_list[0].get_frequency() timeseries_list = [tms.dropna().to_simple_returns() for tms in timeseries_list] df = pd.concat(timeseries_list, axis=1).fillna(0) rolling_window_len = int(freq.value / 2) # 6M rolling step = round(freq.value / 6) # 2M shift legend = LegendDecorator() chart = LineChart(start_x=df.index[0], end_x=df.index[-1]) line_decorator = HorizontalLineDecorator(0, key="h_line", linewidth=1) chart.add_decorator(line_decorator) def alpha_function(df_in_window): strategy_returns = df_in_window.iloc[:, 0] benchmark_returns = df_in_window.iloc[:, 1] beta, alpha, _, _, _ = stats.linregress(benchmark_returns, strategy_returns) return beta, alpha rolling = df.rolling_time_window(rolling_window_len, step, alpha_function) rolling = pd.DataFrame([[b, a] for b, a in rolling.values], columns=["beta", "alpha"], index=rolling.index) rolling_element = DataElementDecorator(rolling["beta"]) chart.add_decorator(rolling_element) legend.add_entry(rolling_element, "beta") rolling_element = DataElementDecorator(rolling["alpha"], use_secondary_axes=True) chart.add_decorator(rolling_element) legend.add_entry(rolling_element, "alpha") chart.add_decorator(legend) chart.add_decorator(AxesFormatterDecorator(use_secondary_axes=True, y_major=PercentageFormatter(".1f"))) # modify axes position to make secondary scale visible axes_position = list(self.full_image_axis_position) axes_position[2] = axes_position[2] - 0.07 position_decorator = AxesPositionDecorator(*axes_position) chart.add_decorator(position_decorator) title_str = "Rolling alpha and beta [{} {} samples]".format(rolling_window_len, freq) title_decorator = TitleDecorator(title_str, key="title") chart.add_decorator(title_decorator) self.document.add_element(ChartElement(chart, figsize=self.full_image_size, dpi=self.dpi))