Source code for qf_lib.common.utils.factorization.factors_identification.stepwise_factor_identifier

#     Copyright 2016-present CERN – European Organization for Nuclear Research
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.

from typing import List

import numpy as np
from sklearn.linear_model import LinearRegression

from qf_lib.common.utils.factorization.factors_identification.factors_identifier import FactorsIdentifier
from qf_lib.common.utils.logging.qf_parent_logger import qf_logger
from qf_lib.containers.dataframe.qf_dataframe import QFDataFrame
from qf_lib.containers.series.qf_series import QFSeries


[docs]class StepwiseFactorsIdentifier(FactorsIdentifier): """ Class used for identifying factors in the model with Stepwise Regression (with Forward Feature Selection). Parameters ---------- epsilon minimal improvement of model. If adding next factor doesn't imporve the score by epsilon, then the algorithm is stopped and new factor is not added. is_intercept True if the output model shall include the intercept, False otherwise (e.g. because data is centered already). """ def __init__(self, epsilon: float = 0.05, is_intercept: bool = True): self.logger = qf_logger.getChild(self.__class__.__name__) self.epsilon = epsilon self.linear_regression = LinearRegression(fit_intercept=is_intercept) @property def intercept(self) -> bool: return self.linear_regression.fit_intercept
[docs] def select_best_factors(self, regressors_df: QFDataFrame, analysed_tms: QFSeries) -> QFDataFrame: """ Returns the dataframe which is the subset of the original regressors_df but only contains rows for dates common for it and analysed_tms and only contains columns for coefficients which should be included in the model. Factors are identified using Stepwise algorithm. Parameters ---------- regressors_df dataframe containing data for regressors (e.g. daily log-returns) analysed_tms timeseries of analysed data (data which should be modeled with regressors, e.g. daily log-returns) Returns ------- QFDataFrame Subset of the original regressors_df. Only contains rows corresponding to dates common for it and analysed_tms. Only contains columns corresponding to coefficients which should be included in the model """ self.logger.info("Model selection using Stepwise in progress...") selected_columns_inds = self._select_with_forward_selection(regressors_df, analysed_tms) selected_columns_inds = np.sort(selected_columns_inds) self.logger.info("Finished Stepwise regression analysis") return regressors_df.iloc[:, selected_columns_inds]
def _select_with_forward_selection(self, regressors_df, analysed_tms) -> List[str]: """ Used stepwise forward selection algorithm for selecting significant factors for the model. Returns ------- List[str] indices of columns selected for the model """ total_columns_number = len(regressors_df.columns) remaining_columns = list(range(total_columns_number)) selected_columns_inds = [] current_score = 0.0 made_improvement = True while made_improvement and remaining_columns: new_score, best_candidates_idx = \ self._get_next_factor(analysed_tms, regressors_df, selected_columns_inds, remaining_columns) # check if adding a new factor improves the model at least by self.epsilon if new_score - current_score >= self.epsilon: remaining_columns.remove(best_candidates_idx) selected_columns_inds.append(best_candidates_idx) current_score = new_score else: made_improvement = False return selected_columns_inds def _get_next_factor(self, analysed_tms, regressors_df, selected_columns_inds, unused_columns_inds): scores_of_candidates = [] for candidate in unused_columns_inds: columns_to_pick_inds = [candidate] + selected_columns_inds used_regressors = regressors_df.iloc[:, columns_to_pick_inds] self.linear_regression.fit(used_regressors, analysed_tms) r_squared = self.linear_regression.score(used_regressors, analysed_tms) scores_of_candidates.append(r_squared) # index of best candidate in the candidates_array best_candidate = np.argmax(scores_of_candidates) best_candidates_score = scores_of_candidates[best_candidate] # index of best candidate in the regressors_df.columns array best_candidates_idx = unused_columns_inds[best_candidate] return best_candidates_score, best_candidates_idx