Source code for qf_lib.plotting.charts.cone_chart_oos

#     Copyright 2016-present CERN – European Organization for Nuclear Research
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.

from itertools import cycle
from typing import Sequence, List, Tuple

import matplotlib as mpl

from qf_lib.common.utils.confidence_interval.analytical_cone_oos import AnalyticalConeOOS
from qf_lib.containers.series.qf_series import QFSeries
from qf_lib.plotting.charts.chart import Chart
from qf_lib.plotting.decorators.data_element_decorator import DataElementDecorator


[docs]class ConeChartOOS(Chart): """ While using a simple cone (e.g. LineChart with Cone decorator) the results of the evaluation may be very different depending on the live_start_date. To be immune to this, ConeChart plots only the ends of simple cones which start at 1 periods, 2 periods, ..., n periods before the end of the backtested series. The period length depends on the frequency of the data provided for the chart. If it has daily frequency, then the length of one period will be 1 day. Parameters ---------- oos_series: QFSeries data to be plotted using ConeChartOOS - only the Out of sample data is_mean_return: float mean daily log return of the strategy In Sample is_sigma: float std of daily log returns of the strategy In Sample cone_opacity: float opacity of the cone cone_stds: Sequence[float] list/tuple of different standard deviations for which cones should be drawn title: Optional[str] title of the plot, by default it is 'Performance vs. Expectation' """ def __init__(self, oos_series: QFSeries, is_mean_return: float, is_sigma: float, cone_opacity: float = 0.3, cone_stds: Sequence[float] = (1.0, 2.0), title: str = 'Performance vs. Expectation'): super().__init__() self.assert_is_qfseries(oos_series) self.oos_series = oos_series self.is_mean_return = is_mean_return self.is_sigma = is_sigma self.cone_opacity = cone_opacity self.cone_stds = cone_stds self.title = title
[docs] def plot(self, figsize: Tuple[float, float] = None): self._setup_axes_if_necessary(figsize) cone = AnalyticalConeOOS() cone_data_frame = cone.calculate_aggregated_cone_oos_only( self.oos_series, self.is_mean_return, self.is_sigma, 0) strategy_tms = cone_data_frame['Strategy'] mean_tms = cone_data_frame['Expectation'] ax = self.axes ax.plot(strategy_tms) ax.plot(mean_tms) cone_colors = cycle(Chart.get_axes_colors()[2:4]) # fill areas for every standard deviation for cone_std in self.cone_stds: upper_df = cone.calculate_aggregated_cone_oos_only( self.oos_series, self.is_mean_return, self.is_sigma, cone_std) lower_df = cone.calculate_aggregated_cone_oos_only( self.oos_series, self.is_mean_return, self.is_sigma, -cone_std) upper_bound = upper_df['Expectation'] lower_bound = lower_df['Expectation'] ax.fill_between( cone_data_frame.index, lower_bound, upper_bound, color=next(cone_colors), alpha=self.cone_opacity) ax.set_xlabel('Days in the past') ax.set_ylabel('Current valuation') ax.set_title(self.title) ax.set_xlim(0, self.oos_series.size) self._insert_valuation_text_box(cone, strategy_tms) self._apply_decorators()
def _insert_valuation_text_box(self, cone, strategy_tms): # add text box with average expectation over 20 days and overall horizon one_sigma_df = cone.calculate_aggregated_cone_oos_only(self.oos_series, self.is_mean_return, self.is_sigma, 1) one_sigma_tms = one_sigma_df['Expectation'] valuation_tms = (strategy_tms - 1) / (one_sigma_tms - 1) # type: QFSeries valuation_total = valuation_tms.mean() total_days = valuation_tms.size - 1 # first element is 0 days selected_short_frame = 20 if total_days > selected_short_frame: valuation20d = valuation_tms.head(selected_short_frame + 1).mean() textstr = 'Valuation 20D = {:.2f}\nValuation {}D = {:.2f}'.format(valuation20d, total_days, valuation_total) else: textstr = 'Valuation {}D = {:.2f}'.format(total_days, valuation_total) props = dict(boxstyle='square', facecolor='white', alpha=0.5, edgecolor='grey') font_size = mpl.rcParams['legend.fontsize'] self.axes.text( 0.05, 0.95, textstr, transform=self.axes.transAxes, bbox=props, verticalalignment='top', fontsize=font_size)
[docs] def apply_data_element_decorators(self, data_element_decorators: List["DataElementDecorator"]): pass